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Abstract
We study the dynamical chiral symmetry breaking in (2+1)-dimensional QED
in the presence of an Abelian Higgs model (Ginzburg–Landau model) at the
leading order of 1/N . In the gauge symmetry broken phase, the gauge boson
becomes massive via the Anderson–Higgs mechanism. The Dyson–Schwinger
equation for fermion self-energy depends on two parameters: the gauge boson
mass mA and the Higgs boson mass mh. It is found that, in the region of large
ratio r = mh/mA,mA and mh reduces the critical fermion number Nc, below
which the massless fermion acquires a dynamical mass.

PACS numbers: 11.30.Rd, 11.15.Pg, 11.15.Ex

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum electrodynamics in 2+1 dimensions (QED3) has been investigated extensively for
more than 20 years. The motivation is twofold. As a relatively simple gauge theory, QED3 of
massless fermion exhibits dynamical chiral symmetry breaking (DCSB) [1–10], asymptotic
freedom [11] and fermion confinement [12]. Therefore, it can serve as a toy model to study
these fundamental phenomena in more complicated gauge theories like QCD. On the other
hand, QED3 and its non-relativistic variants have been used to model the physics of a series
of planar condensed matter systems, including high-temperature superconductors [13–24],
quantum Hall systems [25–27], quantum Heisenberg antiferromagnets [15, 19], organic
compounds [28] and graphene [29, 30]. Recently, it becomes more transparent that some
novel physical concepts, such as deconfined quantum critical point [31] and algebraic spin
liquid [20], can be well demonstrated within theories based on QED3.

In 1984, Pisarski [1] studied the chiral behavior of QED3 by solving the Dyson–Schwinger
equation for fermion self-energy. He found DCSB for arbitrary fermion flavor N. Afterwards,
Appelquist et al [3] investigated the Dyson–Schwinger equation in the lowest order of 1/N

expansion and predicted that DCSB takes place only when the fermion flavor is less than
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a critical value Nc = 32/π2. Considering the next to leading order terms [4], the critical
number changes to Nc = 128/3π2. However, the simple treatment of 1/N was criticized
by Pennington and co-workers. They used a different truncation of the fermion DS equation
and found that chiral symmetry is broken for all values of N and the generated mass is an
exponential decrease for increasing N [7]. In their approach, the wavefunction renormalization
was taken into account and the vertex function was chosen carefully to satisfy the Ward–
Takahashi identity, multiplicative renormalizability and gauge covariance. The longitudinal
part of the vertex was determined by Ball and Chiu (BC) [32], while the transverse part was
proposed by Curtis and Pennington (CP) [33]. But the vacuum polarization in the gauge boson
propagator contains only contribution from massless fermions. Afterwards, Maris considered
the coupled DS equations of the fermion and gauge boson propagators accompanied with a
set of simplified vertex functions [8]. The critical fermion flavor so obtained was found to
be about Nc = 3.3. Based on an inequality that restricts the number of degrees of freedom
in strongly coupled field theories, Appelquist et al [34] argued that Nc might be less than
3/2, much lower than the value estimated by the DS equation approach. However, the
validity of this conjectured constraint has not been well justified. Recently, Fischer et al
resolved a set of coupled DS equations using the vertex given by BC and CP and found that
Nc ≈ 4 [10]. Some numerical simulations on lattice QED3 claim to find no decisive sign
of DCSB for N � 2 [35]. The absence of DCSB in these numerical work was attributed
to the large infrared cutoff in lattice studies [36] and the smallness of the generated mass
scale.

In this paper, we consider DCSB in QED3 when the gauge field also couples to scalar fields.
This model can be considered as the effective theory of high-temperature superconductors.
In the slave-boson treatment of the t-J model of high-temperature superconductors, the
elementary excitations are the neutral, spin- 1

2 spinons and the charged, spin-0 holons [24].
They both interact with an internal U(1) gauge field, which originates from enforcing the
no-double occupation constraint at each site [24]. Due to the d-wave gap symmetry, the
low-energy spinon excitations are massless Dirac fermions ψ . The holon can be represented
by a scalar field φ, whose vacuum expectation value plays the role of the superconducting
order parameter. Thus the effective low-energy theory of high-temperature superconductors is
actually a (2+1)-dimensional QED theory of massless fermions and scalar bosons [18, 19, 24].
Physically, DCSB corresponds to the formation of antiferromagnetic long-range order [15, 19].
The gapless spin wave excitation in the antiferromagnetic ground state is the massless
Goldstone boson that arises from the breaking of continuous chiral symmetry. Once the
gapless fermionic spinons acquire a finite gap via the mechanism of DCSB, they are in the
confinement phase [12] and hence cannot be excited at low temperatures. This fact was used
by us [22] to explain the absence of residual thermal conductivity at zero temperature in
underdoped cuprate superconductors.

In the effective gauge theory of high-temperature superconductors, there is no direct
Yukawa coupling φψ̄ψ between the fermion field ψ and the scalar field φ. However, the
scalar fields have important influence on the dynamics of massless fermions by modifying
the propagator of gauge field. The superconducting phase is of particular interest. As is
well known, we should introduce the Anderson–Higgs mechanism when the local gauge
symmetry is spontaneously broken by a nonzero vacuum expectation value 〈φ〉. Such a
mechanism generates a finite gauge boson mass mA, which weakens the coupling strength
of gauge interaction. Considering the fact that fermion vacuum condensation is mediated
by a strong gauge force, it is reasonable to anticipate that a large mA will suppress
DCSB.
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Introducing the scalar fields, the DS equations will become complicated for there are
more propagators and vertexes. As a first step, we only consider the leading terms of 1/N .
In a previous paper [37], we considered the effect of the gauge boson mass mA on DCSB
and found that the critical number Nc is reduced by an increasing mA. When computing
the contribution of the scalar field to the Dyson–Schwinger equation, some approximations
have been made. Specifically, though the gauge boson propagator contains the finite mass
mA, the Anderson–Higgs mechanism was not entirely reflected in the vacuum polarization
function of the scalar field, �B(q). Moreover, for simplicity, the mass of the scalar field
was set to be zero, with the expectation that it has minor influence on Nc. In this paper,
we give a more refined treatment on the effects of the gauge boson mass mA and Higgs
boson mass mh on the Dyson–Schwinger equation. By detailed analytical and numerical
calculations, it is shown that, for large r = mh/mA, these two parameters reduce the critical
value Nc.

In section 2, we obtain the gauge boson propagator in the gauge symmetry broken phase
to the one-loop level. In section 3, we study the corresponding Dyson–Schwinger equation
for fermion self-energy using the bifurcation theory and parameter imbedding method. We
end in section 4 with a brief conclusion.

2. Gauge boson propagator in the gauge symmetry broken phase

The Lagrangian for (2+1)-dimensional QED with N flavors of massless fermions is

LF =
N∑

i=1

ψiγ
µ(i∂µ − eAµ)ψi − 1

4
F 2

µν, (1)

where the fermion field ψ is four-component and γµ are 4 × 4 matrices. In the context of
high-temperature superconductors, the physical fermion flavor is 2, reflecting the two spin
components. At present, we assume a general flavor N and use 1/N as the small parameter
for perturbative expansion. There is an additional coupling between complex scalar fields and
U(1) gauge field1, described by

LB =
N∑

i=1

[|(∂µ + ieAµ)φi |2 − µ2|φi |2 − λ|φi |4]. (2)

This model is usually called the Abelian Higgs model, or relativistic Ginzburg–Landau model.
The flavor of scalar boson is also N.

We work in the Euclidean space. The gauge boson propagator Dµν(q) is given by

D−1
µν (q) = D(0)−1

µν (q) + �µν(q), (3)

where D(0)
µν is the free gauge boson propagator and �µν(q) is the vacuum polarization tensor.

Since the gauge field couples to both fermions and scalar bosons, the one-loop vacuum
polarization contains two parts: �F

µν(q) from fermions and �B
µν(q) from bosons. The fermion

part �F
µν(q) is

�F
µν(q) = α

∫
d3k

(2π)3

Tr[γµk/γν(q/ + k/)]

k2(q + k)2
, (4)

1 In realistic applications to high-temperature supreconductor, the holon field should be non-relativistic. However,
the physics of holons has not been fully understood [18–20, 24]. In most of the early treatments, the holon sector was
either simply neglected [18, 20] or crudely approximated [19]. In order to use the standard methods of quantum field
theory, here we write a model of the standard relativistic scalar QED3. This modification is not expected to change
the basic conclusion about DCSB.

3



J. Phys. A: Math. Theor. 41 (2008) 255402 H Jiang et al

where α = Ne2, which is fixed as N → ∞. A straightforward calculation gives the result

�F
µν(q) =

(
δµν − qµqν

q2

)
αq

8
, (5)

where q is the momentum in three-dimensional Euclidean space.
We now deal with the scalar boson contribution �B

µν(q). For clarity, we retain one flavor
in the following and add N in the final expression of �µν . If µ2 > 0, the scalar field has
a vanishing vacuum expectation value 〈φ〉 = 0. The Lagrangian is invariant under the local
gauge transformation φ(x) → eiθ(x)φ(x). The one-loop polarization function has the form

�B(q) = e2

8π

[
−2µ

q2
+

q2 + 4µ2

q2q
arcsin

(
q2

q2 + 4µ2

)1/2
]

, (6)

with µ being the scalar boson mass. At the limit µ = 0, the polarization reduces to
�B(q|) = e2/16q, which is the previously used expression [37].

If µ2 < 0, the scalar field φ acquires a finite vacuum expectation value

φ0 =
√

−µ2

2λ
= v√

2
, (7)

with v =
√

−µ2/λ. The nonzero 〈φ〉 spontaneously breaks the continuous local gauge
symmetry and hence would, according to the Goldstone theorem, lead to a massless Goldstone
boson. However, the Goldstone boson can be eliminated by a particular gauge transformation.
Meanwhile, the originally massless gauge boson acquires a finite mass. This mechanism
was proposed by Anderson in condensed matter physics and Higgs in particle physics, thus
endowed with the name of the Anderson–Higgs mechanism.

It is convenient to decompose the scalar field in the following form:

φ(x) = v + h(x) + iϕ(x)√
2

. (8)

Inserting this expression into the Lagrangian and expressing µ2 by v and λ, we have

L = L0 + LI ,

L0 = 1

2
(∂µh)2 +

1

2
(∂µϕ)2 − 1

4
F 2

µν +
1

2
e2v2A2

µ − 1

2
2λv2h2,

LI = 1

2
e2A2

µ(h2 + 2vh + ϕ2) − eϕAµ∂µh + e(v + h)Aµ∂µϕ

− λ

4
(h4 + ϕ4 + 4vh3 + 4vhϕ2 + 2h2ϕ2).

(9)

It is easy to see that the mass of the Higgs boson is mh = √
2λv and the mass of the gauge

boson is mA = ev. Since the Landau gauge is especially useful for analyzing models of
symmetry breaking, we will adopt it. In this gauge, the evAµ∂µϕ term disappear. The
one-loop corrections to gauge boson propagator contain four diagrams, see figure 1.
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Figure 1. One-loop corrections for gauge field from scalar fields. The dashed line represents the
Higgs field h, the doted line represents the massless field ϕ, the wiggly line represents the gauge
field.

Calculating these diagrams using dimensional regularization, we obtain

�1
µν(q) = −e2mh

4π
δµν,

�2
µν(q) = 0,

�3
µν(q) = e2

8π
δµν

[
q2 − m2

h

q2
mh +

(q2 + m2
h)

2

2q3
b

]

+
e2

8π

qµqν

q2

(
q2 + 3m2

h

q2
mh − q4 + 2m2

hq
2 + 3m4

h

2q3
b

)
,

�4
µν(q) = e2

8π
δµν

[
m2

A

q2
mh +

q2 + m2
h − m2

A

q2
mA − (q2 + m2

h)
2

2q3
b

+
(q2 + m2

h − m2
A)2 − 4m2

Aq2

2q3
a

]

− e2

8π

qµqν

q2

[
3m2

A

q2
mh +

3(q2 + m2
h − m2

A)

q2
mA − 3(q2 + m2

h)
2

2q3
b

+
3(q2 + m2

h − m2
A)2 + 4m2

Aq2

2q3
a

]
,

(10)

where we have used the abbreviation [38]

a = arctan
q2 + m2

A − m2
h

2mhq
+ arctan

q2 + m2
h − m2

A

2mAq
,

b = arctan
q2 − m2

h

2mhq
+

π

2
.

(11)

Adding all these contributions yields the total one-loop polarization tensor �µν

�µν(q) = �F
µν(q) + �B

µν(q) ≡ �1(q)δµν − �2(q)
qµqν

q2

�1(q) = αq

8
+

α

8π

[
−mh + mA +

m2
h − m2

A

q2
mA +

m2
A − m2

h

q2
mh

+
(q2 + m2

h − m2
A)2 − 4m2

Aq2

2q3
a

]

5
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�2(q) = αq

8
+

α

8π

[
−mh + 3mA + 3

m2
h − m2

A

q2
mA + 3

m2
A − m2

h

q2
mh − q2 + 2m2

h

2q
b

+
3(q2 + m2

h − m2
A)2 + 4m2

Aq2

2q3
a

]
. (12)

Note that, in the symmetry broken phase, the gauge boson is massive and the vacuum
polarization is not transverse. (This fact can be understood from the general Ward–Takahashi
identity of the Abelian Higgs model [39].) The full gauge boson propagator is

Dµν(q) = D(0)
µν (q) − D(0)

µρ (q)�ρσ (q)D(0)
σν (q) + · · ·

= 1

q2 + m2
A + �1(q)

(
δµν − qµqν

q2

)
. (13)

3. Dynamical chiral symmetry breaking

We are now ready to study DCSB. The Dyson–Schwinger equation for the fermion propagator
is given by

S−1
F (p) = S

(0)−1
F (p) + e2

∫
d3k

(2π)3
γ µSF (k)Dµν(p − k)�ν(k, p). (14)

To the leading order in 1/N expansion, the vertex function �ν is replaced by the bare vertex
γ ν . In the Landau gauge, the inverse fermion propagator can be written as

SF (p)−1 = ip/ + �(p), (15)

where the wavefunction renormalization is neglected. Taking trace on both sides of the DS
equation, we arrive at a closed integral equation for fermion self-energy

�(p) = e2

4

∫
d3k

(2π)3

�(k)

k2 + �2(k)
Tr[γ µDµν(p − k)γ ν]. (16)

Inserting the gauge boson propagator (13) into this equation leads to

�(p) = 2α

N

∫
d3k

(2π)3

�(k)

k2 + �2(k)

1

(p − k)2 + m2
A + �1(p − k)

. (17)

If this equation develops a nontrivial solution, then the massless fermion acquires a finite mass,
which signals the occurrence of DCSB.

Before performing numerical computations, we would like to make some qualitative
analysis. Note that the Higgs mass mh = √

2λv and the gauge boson mass mA = ev are not
independent quantities. We can choose either as the turning variable and study how it affects
the critical flavor Nc. Their ratio

r = mh

mA

=
√

2λ

e
(18)

is considered as an external parameters.
When mA (and hence mh) approaches zero, the polarization �1(q) becomes

αq

8
+

αq

16
. (19)

The first term is the contribution from the fermion loops, while the αq/16 term reflects the
additional coupling between the massless gauge field and the scalar fields. In this limit,
following Appelquist [3], the integral equation can be converted to a differential equation
giving the critical flavor Nc = 64/3π2.

6
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Figure 2. The variation of Nc from mA for different ratio r = mh/mA.

Since the main contribution in the integral comes from the momenta |p − k| < α, we can
expand the denominator in terms of |p − k| = q. The function a can be written as

a = 2

[
q

mh + mA

− q3

3(mh + mA)3
+

q5

5(mh + mA)5
− · · ·

]
. (20)

Then the leading terms of the denominator in the integral is

m2
A +

αq

8
+

αmA

12π

r2 + r − 8

r + 1
. (21)

For relatively large r, it is an increasing function of both mA and r variables. So one can guess
that the critical flavor Nc is a decreasing function of both mA and r.

When q = 0, the polarization �1(0) becomes negative for small r, thus the denominator
in the integral may become negative. However, for the system considered in our paper,
this situation can never be met. Here, the ratio r is the Ginzburg–Landau parameter
κ (r = √

2κ) [38]. A large value of r corresponds to the type-II regime. The high-temperature
superconductors are all extreme type-II superconductors and the Ginzburg–Landau parameter
is generally about 100. Thus we only consider the relatively large value of r.

We apply the bifurcation theory and parameter imbedding method to solve this nonlinear
integral equation. The basic idea and detailed computation procedures are presented in
previous papers [37, 40]. To determine the bifurcation point, which separates the chiral
symmetric phase and chiral symmetry broken phase, we only need to find the eigenvalues
of the associated linearized equation. Taking the Frêchet derivative of the nonlinear integral
equation, we obtain

�(p) = 2α

N

∫
d3k

(2π)3

1

k2

�(k)

(p − k)2 + m2
A + �1(p − k)

. (22)

In the numerical calculations, the mass terms (mh,mA and �) and momenta (p, k) are
scaled by α. The whole results are presented in figure 2. From the figure, we see that: the
critical flavor Nc really decreases as the turning variable mA/α and the ratio r increases. As
the mass tends to zero, the corresponding value of Nc is about 2.14, just about the expected
value 64/3π2.

7
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DCSB is essentially a low-energy phenomenon and takes place only in field theories that
are asymptotic free. To trigger fermion–anti-fermion condensation, the gauge force must be
strong enough at low energy (or, large distance). In the gauge symmetry broken phase, as the
gauge boson mass mA becomes larger, the attraction force between fermion and anti-fermion
is weaker. For a fixed physical flavor N, DCSB is completely suppressed when mA exceeds
some critical value. The polarization function �1 also affects the critical flavor Nc. For large
r, the one-loop correction �1(q) increases as mA becomes larger, making the critical flavor
Nc to further decrease.

4. Conclusion and discussion

We studied the DS equation for fermion self-energy in QED3 with an Abelian Higgs model at
the leading order of 1/N . In the gauge symmetry broken phase, the gauge boson mass and the
Higgs boson mass both alter the critical number for fermion to acquire dynamically generated
mass. By numerically solving the DS equation, it is found that, for large r, the critical flavor
Nc is a monotonously decreasing function of the gauge boson mass mA, and also of the Higgs
boson mass mh.

In realistic applications to high-temperature superconductors, the parameter r always has
a large value. However, from a purely theoretical point of view, the region of small r is rather
interesting. As parameter r decreases, the system would undergo a type-II to type-I transition
at some particular value rc . The impact of such transition on DCSB is unknown and deserves
further exploration.

One important issue is the validity of the approximations used in our treatment of the DS
equation. In the present work, the approximation is the same as that adopted by Appelquist
et al [3]. The qualitative prediction of the finiteness of critical flavor Nc and the crude value
of Nc obtained under this approximation have been confirmed by most (though not all) of the
subsequent investigations. To go beyond the present approximation, we need to include the
self-consistent equations of wavefunction renormalization and gauge boson polarization, and
to consider various vertex corrections, as in the recent publication of Fischer et al [10]. Due
to the complexity of vacuum polarization brought by the Higgs mechanism, we would like to
consider these corrections in the forthcoming work.
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